等差数列所有公式大全(等差数列公式大全)
本文目录
等差数列公式大全
一、
等差数列
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列的通项公式为:an=a1n+(n-1)d
(1)
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2
(2)
以上n均属于正整数。
从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。
且任意两项am,an的关系为:an=am+(n-m)d
它可以看作等差数列广义的通项公式。
从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
等差数列的应用:
日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别
时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。
若为等差数列,且有an=m,am=n.则a(m+n)=0。
3.等差数列的基本性质
⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
⑶若、为等差数列,则{
a
±b
}与{ka
+b}(k、b为非零常数)也是等差数列.
⑷对任何m、n
,在等差数列中有:a
=
a
+
(n-m)d,特别地,当m
=
1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l
+
k
+
p
+
…
=
m
+
n
+
r
+
…
(两边的自然数个数相等),那么当为等差数列时,有:a
+
a
+
a
+
…
=
a
+
a
+
a
+
…
.
⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(
k为取出项数之差).
⑺如果是等差数列,公差为d,那么,a
,a
,…,a
、a
也是等差数列,其公差为-d;在等差数列中,a
-a
=
a
-a
=
md
.(其中m、k、
)
⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.
⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.
⑽设a
1,a
2,a
3为等差数列中的三项,且a1
与a2
,a
2与a
3的项距差之比
=
d(
d≠-1),则2a2
=
a1+a3.
关于等差数列所有的公式!要详细!
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
以上n均为正整数
文字翻译
第n项的值an=首项+(项数-1)×公差
前n项的和Sn=(首项+末项)×项数÷2
公差d=(an-a1)÷(n-1)
项数=(末项-首项)÷公差+1
数列为奇数项时,前n项的和=中间项×项数
数列为偶数项,求首尾项相
等差数列的通项公式为:an=a1+(n-1)d
(1)
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2
(2)
以上n均属于正整数。
等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。
任意两项am,an的关系为:an=am+(n-m)d
从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
加,用他的和除以2
等差中项公式2an+1=an+an+2其中{an}是等差数列
等差数列公式是什么
等差数列的通项公式为:“an=a1+(n-1)*d”(n:表示项数,d:表示公差,a1:表示首项),等差数列的前n项和公式为:“Sn=a1*n+/2”。注意其中的n都为整数。
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
扩展资料:
等差数列的基本性质:
1、若等差数列Sp=q,Sq=p,则Sp+q=-p-q,并且有ap=q,aq=p则ap+q=0。
2、在等差数列中,S = a,S=b(n》m),则S=(a-b)。
3、记等差数列的前n项和为S。若a》0,公差d《0,则当a≥0且an+1≤0时,S 最大、若a《0,公差d》0,则当a≤0且an+1≥0时,S 最小。
4、数列为等差数列的重要条件是:数列的前n项和S可以写成S=an*an+bn的形式(其中a、b为常数)。
5、若数列为等差数列,则Sn、S2n-Sn、S3n-S2n…仍然成等差数列,公差为n*n*d。
在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和,特别的,若项数为奇数,还等于中间项的2倍。
参考资料来源:百度百科-等差数列
等差数列相关的公式都有哪些
等差数列的通项公式为:an=a1+(n-1)d
或an=am+(n-m)d
前n项和公式为:sn=na1+n(n-1)d/2或sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
以上n均为正整数
文字翻译
第n项的值=首项+(项数-1)×公差
前n项的和=(首项+末项)×项数÷2
公差=后项-前项
等差数列所有公式大全
等差数列是常见的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列公式大全
等差数列公式
等列公式:an=a1+(n-1)d(n为正整数)
S1为首项,an为第n项的通项公式,d为公差。
前n项和公式为:Sn=na1+n(n-1)d/2(n为正整数)
Sn=n(a1+an)/2 注:n为正整数
若n、m、p、q均为正整数,
若m+n=p+q时,则:存在am+an=ap+aq
若m+n=2p时,则:am+an=2ap
若A、B、C均为正整数,B为中项,B=(A+C)/2
也可推导得Sn=na1+nd(n-1)/2
等差数列公式都有哪些
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列基本公式:
末项=首项+(项数-1)×公差
项数=(末项-首项)÷公差+1
首项=末项-(项数-1)×公差
和=(首项+末项)×项数÷2
通项公式
等差数列的通项公式为:an=a1+(n-1)d (1)
前n项和公式
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)
以上n均属于正整数.
推论
1.从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.
2.从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
3.若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.
若m+n=2p,则am+an=2ap
4.其他推论
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
推论3证明
若m,n,p,q∈N*,且m+n=p+q,则有若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq
如am+an=a1+(m-1)d+a1+(n-1)d
=2a1+(m+n-2)d
同理得,
ap+aq=2a1+(p+q-2)d
又因为
m+n=p+q ;
a1,d均为常数
所以
若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq
注:1.常数列不一定成立
2.m,p,q,n大于等于自然数
等差中项
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数.
且任意两项am,an的关系为:an=am+(n-m)d
它可以看作等差数列广义的通项公式.
等差数列的公式
等差数列基本公式: 末项=首项+(项数-1)*公差 项数=(末项-首项)÷公差+1 首项=末项-(项数-1)*公差 和=(首项+末项)*项数÷2 末项:最后一位数 首项:第一位数 项数:一共有几位数 和:求一共数的总和。
Sn=na(n+1)/2 n为奇数
sn=n/2(A n/2+A n/2 +1) n为偶数等差数列如果有奇数项,那么和就等于中间一项乘以项数,如果有偶数项,和就等于中间两项和乘以项数的一半,这就是中项求和。
公差为d的等差数列{an},当n为奇数是时,等差中项为一项,即等差中项等于首尾两项和的二分之一,也等于总和Sn除以项数n。将求和公式代入即可。当n为偶数时,等差中项为中间两项,这两项的和等于首尾两项和,也等于二倍的总和除以项数n.
等差数列的几个公式是什么
等差数列的通项公式为:an=a1+(n-1)d (1)
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)
以上n均属于正整数.
等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数.
任意两项am,an的关系为:an=am+(n-m)d
从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差